If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-10x^2-2x+3=0
a = -10; b = -2; c = +3;
Δ = b2-4ac
Δ = -22-4·(-10)·3
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{31}}{2*-10}=\frac{2-2\sqrt{31}}{-20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{31}}{2*-10}=\frac{2+2\sqrt{31}}{-20} $
| a-4/6=6 | | 4x+12=-38-7x | | a=6-4/6 | | (x+7)=93x-21) | | 2r-(1/(1+r))=0 | | 0=30+40t-4.9t^2 | | 55=x/4+23 | | -3(x+1)=3(x+1)-5 | | 11=c/40 | | 5(x−2)+19=4(x+3) | | x=-13x-7 | | 2/9u=-8 | | |3x+8|=|4-2x| | | -57-l=-78 | | 4(2a-8)=1/2(14a+20) | | 4/5x-6=22 | | 1.8=t^2-2 | | -5x+20=4 | | B2-8b=-15 | | 3a-4+6a+4=5a+22 | | H(1.8)=t^2-2t | | -90=-15r | | (8x-3)=79 | | 9x-7=182 | | 10=7a+2a | | (6x-11)(7x+19)=0 | | 4x-5=2(2x-8) | | 4×-2+x=-2÷2× | | H(5)=t^2-2 | | 13.4=7.2+2x | | 4(y+3)=2y+14 | | K2+9k-5=5 |